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Monte Carlo statistical mechanics simulations were used in combination with the extended
linear response (ELR) approach to develop a model to predict the activities of kinase inhibitors.
One hundred forty eight inhibitors of three protein kinases, cyclin-dependent kinase 2 (CDK2),
lymphocyte-specific kinase (Lck), and p38 mitogen-activated protein kinase were considered.
The inhibitor sets for the individual kinases were analyzed first, and ELR models using only
three descriptors were obtained with correlation coefficients, r2, of 0.7-0.8. Models for each
pair of kinases were then developed and used to predict the activities of the inhibitors for the
remaining kinase with resultant q2 values of 0.71 (CDK2), 0.70 (Lck), and 0.54 (p38). Finally,
the three datasets were combined to yield a general ELR model for kinase inhibition; with
just three physically reasonable descriptors, EXX, ∆HBtotal, and ∆SASA, the r2 and leave-one-
out q2 are 0.69 and 0.67. The optimization of the model was confirmed using a genetic algorithm.
The descriptors reflect the structural requirements for strong inhibition: good steric and
electrostatic complementarities between inhibitor and protein, limited loss of hydrogen bonds
for the inhibitor upon binding, and increased burial of surface area of the inhibitor.

Introduction
Rapid, accurate estimation of binding affinities for

protein-ligand complexes is crucial for structure-based
drug design. If a valid correlation between calculated
binding affinities for protein-ligand complexes and
experimental binding or activity data exists, the pre-
dicted binding affinities of proposed compounds could
be used in prioritizing their synthesis. Although many
approaches, ranging from rapid empirical scoring
methods1-3 to computationally intensive free energy
perturbation (FEP) calculations,4,5 have been pursued,
a fully satisfactory solution has yet to emerge.

Among the alternatives, the linear response (LR)
approach that was originally introduced by A° qvist et
al. is less computationally intensive than FEP calcula-
tions and provided promising initial results.6 In the
original method,6 the binding free energy (∆Gb) for a
protein-ligand complex was calculated using the dif-
ference in the average interaction energies between the
unbound ligand with water and the bound ligand with
protein and water. In eq 1, the ensemble averages,
which are normally calculated using molecular dynam-
ics or Monte Carlo (MC) simulations, are for the
difference in van der Waals and Coulombic interaction

energies in the bound and unbound states (Figure 1).
The coefficient R is an empirical scaling factor deter-
mined by fitting the simulation results to experimental
free energies of binding.

The method was extended to include a third param-
eter for the change in the solvent-accessible-surface area
(SASA), and the coefficient for the electrostatic term was

allowed to deviate from 0.5 (eq 2).7-9 Expanded studies
of protein-ligand binding led to further generalization,

as expressed in the extended linear response (ELR)
expression, eq 3.10-14 Here, cn represents an optimizable

coefficient for the associated descriptor ên, which rep-
resents a physically reasonable quantity relevant to
protein-ligand binding. Some sensible descriptors, such
as EXX-LJ, ∆HBtotal, ∆FOSA, ∆Eint, and #RB, emerged
as the most significant in studies of the inhibition of
HIV-1 reverse transcriptase (RT),10,11 thrombin,12 cyclo-
oxygenase-2 (COX2),13 and factor Xa.14 EXX-LJ is the
ligand-protein Lennard-Jones (van der Waals) inter-
action energy; ∆HBtotal represents the change in the
number of hydrogen bonds for the inhibitor upon bind-
ing; ∆FOSA is the change in the hydrophobic component
of the solvent accessible surface area of the inhibitor
upon binding; ∆Eint is the change in internal energy of
the inhibitor upon binding; and #RB is the number of
rotatable bonds for the inhibitor. Although these target
proteins belong to several protein families and their
inhibitors are structurally diverse, consensus is building
for the general importance of at least EXX-LJ and
∆HBtotal, which each appear in the regression equations
for three of the four cases.

In search of a general ELR model for protein-ligand
binding, the diversity of the training dataset needs
expansion for both the ligand structures and protein
targets. Recently, the former aspect received attention
in an ELR study for HIV-1 RT, which included ca. 250
inhibitors with eight different core structures.11 In the
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present study, attention is turned to increased protein
diversity and the specific case of kinase selectivity.
Protein kinases are important therapeutic targets, and
many three-dimensional structures and data on biologi-
cal activity are available.15 Most kinase inhibitors
compete with ATP for the ATP binding site. As numer-
ous protein kinases show high sequence homology in
this region,16 selective inhibition of a single target
kinase is challenging. We chose to study the following
three representative systems: cyclin-dependent kinase
2 (CDK2), lymphocyte-specific kinase (Lck), and p38
mitogen-activated protein kinase (p38). The CDK2 and
Lck inhibitors in this study indeed bind to the ATP-
binding site. However, for additional diversity, the
present p38 inhibitors were chosen because they bind
to an allosteric site that is adjacent to the ATP-binding
site; they interfere with the kinase activity by indirectly
competing with ATP binding.

Cyclin-dependent kinases (CDKs) are members of the
cdc2 family of serine-threonine protein kinases. They
are important regulators that control the timing and
coordination of progression of the cell cycle.17-19 Transi-
tion between the four phases of the cell cycle is con-
trolled by cyclins, CDKs, and CDK inhibitory proteins.
Cyclin D and CDKs 4 and 6 control passage through
the G1-phase; cyclin E and CDK2 control the G1- to
S-phase transition; cyclin A and CDK2 regulate the
passage through the S-phase; and cyclin B and CDK1
control the G2 checkpoint and regulate the entry into
the M-phase. It has been shown that the aberrant
regulation of CDKs and the consequential loss of the
cell cycle checkpoint function directly link to the mo-
lecular pathology of cancer;20-22 therefore, CDKs are
believed to be attractive targets for the development of
antitumor drugs.

Lck is a member of the nonreceptor Src family of
tyrosine kinases and plays essential roles in immune
response. Lck activates a number of substrates neces-
sary for T cell antigen receptor signaling that leads to
cytokine production and T cell activation.23,24 The
inhibition of Lck is potentially useful for the treatment
of both chronic and acute T cell-mediated autoimmune
and inflammatory disorders, such as rheumatoid ar-
thritis, multiple sclerosis, transplant rejection, and
delayed hypersensitivity reactions.25

p38 is a member of the family of mitogen-activated
serine-threonine protein kinases. It is an important
regulator of the signal transduction cascade leading to

the production of proinflammatory cytokines, such as
tumor necrosis factor-R and interleukin-1â.26 Although
appropriate amounts of these cytokines play an impor-
tant role in the host immune response, an excess of
proinflammatory cytokines may cause chronic inflam-
matory diseases, such as rheumatoid arthritis, inflam-
matory bowel disease, and septic shock.27,28 Therefore,
the inhibition of p38 and the suppression of proinflam-
matory cytokines are potentially useful for the treat-
ment of these diseases.

The goals of this study are to identify the important
descriptors and optimal ELR models for reproducing
kinase activities, to evaluate the transferability of the
models between kinase systems, and to determine the
best overall ELR model for kinase inhibition.

Methods
Dataset. The structure-activity data shown in Tables 1-10

were taken from the liturature.29-33 Experimental IC50 values
determined by assaying the kinase activity of CDK229,30 and
Lck32,33 were put on a free energy scale (∆Gexpt) by using eq 4;

such IC50 data are expected to parallel relative free energies
of binding in a closely related series of inhibitors.34 For p38,
experimental Kd values were reported31 and are converted to
free energies of binding via eq 5. Such data from different

sources cannot unequivocally be pooled owing to differences
in the assays or assay conditions. This is addressed in the
development of statistical models through the introduction of
indicator variables that allow constant offsets for different
datasets. In the following, the use of only one such indicator
variable was found to be statistically significant.

Protein Structures. When modeling protein-ligand in-
teractions quantitatively, special attention should be paid to
the consistency between the protein structure and the condi-
tions for its biological assay. To parallel the assays that yield
IC50 data for kinase inhibition, it is important to use the
structures of the activated enzymes.

The activation of CDK2 is a two-step process that requires
cyclin A binding and phosphorylation of Thr160.35-37 The
structure of CDK2 phosphorylated on Thr160 is similar to that
of inactive CDK2. However, upon association with cyclin A,
CDK2 undergoes significant conformational changes in which
active site residues are rearranged and the conformation of
the ATP-binding site is influenced (Figure 2). Accordingly, the
X-ray structure of the complex of cyclin A and CDK2 phos-

Figure 1. Schematic representation of protein-ligand binding and the environment of the ligand in unbound (left) and bound
(right) states.

∆Gexpt ≈ RT ln IC50 (4)

∆Gexpt ) RT ln Kd (5)
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Figure 2. Structures of the inactive form of CDK2 (left) and that of the Thr160 phosphorylated CDK2-cyclinA complex (right).
CDK2 is in blue, cyclin A in magenta, bound ATP in red, and Thr160 phosphate and activation segment (residues 145-172) in
orange.

Table 1. CDK2 Activities of Core 1 Derivatives

no. R1 R2 R3 IC50
a (nM) ∆Gexpt

b

C1 H H H 120 -9.43
C2 I H H 4.6 -11.36
C3 CH2CH3 H H 7.9 -11.04
C4 CH(CH3)2 H H 2.5 -11.72
C5 CH2CH(CH3)2 H H 1.2 -12.16
C6 CHdC(CH3)2 H H 1.5 -12.02
C7 OCH2CH3 H H 93 -9.58
C8 OCH(CH3)2 H H 3.4 -11.54
C9 OPh H H 13 -10.74
C10 (CH2)2-(4-pyridinyl) H H 21 -10.46
C11 (CH2)2-(4-phenol) H H 12 -10.79
C12 3-pyrazolyl H H 19 -10.52
C13 NO2 H H 2400 -7.66
C14 CONH2 H H >1000 >-8.17
C15 H F H 34 -10.18
C16 H Cl H 43 -10.04
C17 H Br H 60 -9.84
C18 H I H 11 -10.84
C19 H CH3 H 46 -10.00
C20 H OH H 10 -10.90
C21 H OCH3 H 12 -10.79
C22 H NO2 H 15 -10.66
C23 H NH2 H 74 -9.72
C24 H SO2CH3 H 16 -10.62
C25 H SO2NH2 H 43 -10.04
C26 H CONH2 H 4.5 -11.37
C27 H CON(CH3)2 H 17 -10.59
C28 H CONHCH2-(4-pyridinyl) H 8.9 -10.97
C29 H CONHCH2-(3-pyridinyl) H 2.1 -11.82
C30 H 5-oxazolyl H 2.3 -11.77
C31 H H Br 43 -10.04
C32 H H CH2CH3 21 -10.46
C33 H H CH(CH3)2 75 -9.71
C34 H H OPh >10 000 > -6.81
C35 Cl CH3 H 13 -10.74
C36 Cl OCH3 H 54 -9.90
C37 CH3 NO2 H 4.6 -11.36

a Reference 29. b Experimental free energies from ∆Gexpt ≈ RT ln(IC50) in kcal/mol.
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phorylated on Thr160 (1QMZ,36 2.2 Å) was selected as the
starting point in the present studies.

Lck is activated by autophosphorylation of Tyr394 in the
activation loop and is inactivated when Tyr505 near the
C-terminus is phosphorylated and interacts with its own SH2
domain.38,39 Accordingly, the X-ray structure of Lck phos-
phorylated on Tyr394 (1QPE,40 2.0 Å) was selected as the
starting point in this case.

For p38, the X-ray structure (1KV1,41 2.5 Å) of the com-
plex of p38 and M1 was selected as an appropriate starting
point.

System Preparation. The 10 core structures, as illustrated
in Tables 1-10, were used to generate the protein-inhibitor
complexes as well as the unbound inhibitors using the
Biochemical and Organic Model Builder (BOMB) program.42

This program was formerly called GenMol; the name has been
changed to avoid confusion with another program with the
same name. The core in Table 1 was initially positioned in
the ATP-binding site of CDK2 in the manner observed in X-ray
structures for oxindoles with CDK2,29 then protein residues
with all atoms beyond 15 Å from any atom of the core were
removed. To avoid excessive fragmentation of the protein
backbone, a few amino acids were added, and clipped residues
were capped with acetyl and methylamine groups. All protein

residues beyond 10 Å from the core were kept rigid during
the final MC simulations. The initial structures for the
complexes with the cores for Tables 2-4 were then prepared
by replacement of the first core in the ATP-binding site; the
core for Table 5 was positioned as illustrated in ref 30 based
on the X-ray structure for flavopiridol with CDK2. The initial
complex for the Lck core (Table 10) was built in an analogous
manner based on the analysis of X-ray and activity data in
ref 32. As the X-ray structure of M1 complexed with p38 was
available, the structure of the M1 complex was modified to
correspond to the cores for Tables 6 to 8,and these structures
were then processed in the same manner as for the CDK2
system. As there are some missing residues in the 1KV1 X-ray
structure, all protein residues with all atoms beyond 12 Å from
M1 were removed, and all protein residues beyond 9 Å from
it were kept rigid during the MC simulations. The final
systems consisted of 115, 134, and 115 protein residues plus
the inhibitors for CDK2, Lck, and p38, respectively. Specifi-
cally, for the CDK2 system, the rigid residues are 2A-6A,
15A-16A, 22A-27A, 45A-50A, 53A-54A, 56A-62A, 69A-
70A, 94A, 108A-113A, 124A, 126A, 128A, 137A-141A, 149A,
166A-167A, 193A-194A, and 295A, and the flexible residues
are 7A-14A, 17A-21A, 28A-35A, 51A-52A, 55A, 63A-68A,
77A-93A, 125A, 127A, 129A-136A, and 142A-148A. In the

Table 2. CDK2 Activities of Core 2 Derivatives

no. R1 R2 IC50
a(nM) ∆Gexpt

b

C38 H H >10000 >-6.81
C39 H OCH3 >10000 >-6.81
C40 H Br >10 000 >-6.81
a Reference 29. b Experimental free energies from ∆Gexpt ≈ RT

ln(IC50) in kcal/mol.

Table 3. CDK2 Activities of Core 3 Derivatives

no. R1 R2 R3 R4 R5

IC50
a

(nM) ∆Gexpt
b

C41 H H H H H 690 -8.39
C42 CH3 H H H H 360 -8.78
C43 CH3 H Cl H H 22 -10.43
C44 H CH2OH H H H 54 -9.90
C45 H H N(CH3)2 H H 310 -8.87
C46 H H COOCH3 H H 2.1 -11.82
C47 H H H CH2OH H 61 -9.83
C48 H H H H CH3 >10000 >-6.81
C49 H H Cl H CH3 >10000 >-6.81

a Reference 29. b Experimental free energies from ∆Gexpt ≈ RT
ln(IC50) in kcal/mol.

Table 4. CDK2 Activities of Core 4 Derivatives

no. R1 R2 IC50
a (nM) ∆Gexpt

b

C50 H H 2.8 -11.65
C51 CH3 H 5.6 -11.24
C52 CH3 CH3 4.6 -11.36
C53 CH2CH2OH H 4.7 -11.35
C54 Ph H 4.3 -11.40
C55 pyrid-2-yl H 9.7 -10.92
C56 CH2Ph H 5.6 -11.24
C57 COCH3 H 75 -9.71
a Reference 29. b Experimental free energies from ∆Gexpt ≈ RT

ln(IC50) in kcal/mol.

Table 5. CDK2 Activities of Core 5 Derivatives

no. R1 R2 IC50
a (nM) ∆Gexpt

b

C58 H H 1280 -8.36
C59 H Cl 3970 -7.66
C60 NO2 H 310 -9.23
C61 SO2NH2 H 30 -10.67
a Reference 30. b Experimental free energies from ∆Gexpt ≈ RT

ln(IC50) in kcal/mol.
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Lck system, the rigid residues are 237-248, 255-256, 263-
268, 276-283, 293-299, 307-311, 328-332, 345-354, 361,
363-366, 375-376, 378, 386, and 430-431, and the flexible
residues are 249-254, 257-262, 269-275, 284-292, 300-306,
312-327, 362, 367-374, 377, and 379-385. In the p38 system,
the rigid residues are 19, 25-29, 32-34, 40, 56-57, 64-66,
69, 81, 89, 110-112, 135-136, 139, 143, 152-153, 184, 201-
204, 206-211, 319, 321-322, 324-327, and 346-347, and the
flexible residues are 30-31, 35-39, 50-55, 67-68, 70-80, 82-

88, 102-109, 134, 137-138, 140-142, 144-151, 154-157,
165-170, 205, 320, and 323. To enforce charge neutrality for
the entire systems, some of the rigid Arg, Lys, Glu, and Arg
residues were made neutral. The tautomeric states of His
residues were assigned by visual inspection. Initial coordinates
for the side chains of Gln277 and Gln309 for the Lck system,
which were not determined by X-ray analysis, were generated
by imposing dihedral angles from a standard rotamer library.

All protein residues and inhibitors were represented by the
OPLS all-atom force field43 with the exception that CM1A
charges,44 scaled by 1.08, were used for the atomic charges of
the inhibitors. Each of the protein-core complexes for the CDK2
and Lck systems was subject to 50 steps of conjugate gradient
energy minimization, using a distance-dependent dielectric
constant of 4 (ε ) 4r), to relax the crystal structure and remove
any arbitrariness of the manual docking. All molecular me-
chanics and MC calculations were performed with the MCPRO
program.45 Since the cores for p38 were not large enough to
fill the binding site, energy minimization was not performed
at this stage. Initial conformations of the bound ligands in
Tables 1-10 were generated using BOMB, starting from the
corresponding protein-core complexes. BOMB performs an
extensive conformational search for the ligand in the binding
site, optimizes the ligand’s position, orientation, and dihedral
angles, and saves the lowest energy complex for subsequent
MC simulations. For the p38 complexes, conjugate-gradient
energy minimization was carried out for each protein-ligand
complex after it was built by BOMB. Finally, each ligand was
extracted from the binding site to provide the initial structure
of the free ligand.

MC Simulations. Using a 22 Å TIP4P water cap,46 a half-
harmonic potential with a 1.5 kcal mol-1 Å2 force constant was
applied to water molecules whose oxygen atoms might drift
more than 22 Å from the center of the sphere. All side-chain
bond and dihedral angles of protein residues with any atoms
within ca. 10 Å (CDK2 and Lck) or 9 Å (p38) from the center
of the water cap and all degrees of freedom of each inhibitor

Table 6. p38 Activities of Core 6 Derivatives

no. R1 R2 Kd
a (nM) ∆Gexpt

b

M1 CH3 Cl 350 -8.80
M2 phenyl Cl 8 -11.03
M3 phenyl H 13 -10.74
M4 cyclohexyl H 500 -8.58
M5 2-methylphenyl H 200 -9.13
M6 3-methylphenyl H 2 -11.85
M7 4-methylphenyl H 3 -11.61
M8 3,4-dimethylphenyl H 4 -11.44
M9 2-naphthyl H 8 -11.03
M10 3-aminophenyl H 25 -10.36
M11 4-aminophenyl H 7 -11.11
M12 3-methoxyphenyl H 19 -10.52
M13 4-methoxyphenyl H 31 -10.23
M14 4-pyridinyl H 21 -10.46

a Reference 31. b Experimental free energies from ∆Gexpt ) RT
ln(Kd) in kcal/mol.

Table 7. p38 Activities of Core 7 Derivatives

a Reference 31. b Experimental free energies from ∆Gexpt ) RT ln(Kd) in kcal/mol.
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were sampled using the Metropolis procedure, while the
protein backbone was held fixed after the initial energy
minimizations. Bond lengths for the protein were not varied.
A protein residue-inhibitor list, which was kept constant
during the MC simulations, was determined for each complex
during the initial solvent equilibration stage. A MC move of a
side chain was randomly attempted every 10 configurations,
while a move for the inhibitor was attempted every 56
configurations, and all remaining moves were for solvent
molecules. The maximum number of internal coordinates to
be varied for an attempted move was limited to 30. Residue-
based cutoffs at 9 Å were used for the solvent-solvent, solute-
solvent, and intrasolute nonbonded interactions. The MC
simulations for the protein-inhibitor complexes of CDK2 and
Lck consisted of 10 million configurations each for solvent-
only equilibration, full equilibration, and averaging. Due to
slower convergence of the electrostatic energy for the p38
system, the full equilibration period was doubled to 20 million
configurations. As described in earlier work,10 an annealing
protocol was applied to the unbound MC simulations in order
to decrease the dependency of starting coordinates to simula-
tion results. Specifically, 10 million configurations of solvent-
only equilibration were performed, followed by 5 million
configurations in which only the water and dihedral angles
for each inhibitor were sampled. The MC acceptance rates for
the moves of the inhibitors were enhanced at this stage by
increasing the temperature to 727 °C (1000 K). Then, 5 million
configurations of full equilibration, followed by 10 million
configurations of averaging, were performed at the normal
temperature (25 or 37 °C depending on the biological assay

conditions). The final three steps (heating, equilibration, and
averaging) were repeated for five cycles.

ELR Descriptors. Key quantities that were averaged for
the ELR analysis during the MC simulations are summarized
in Table 11. The SASA was determined with a probe 1.4 Å
in radius. The solute atomic radii are computed from the
OPLS-AA Lennard-Jones sigmas via r ) 21/6σ/2. For the
hydrogen bond counts, a hydrogen bond was defined as present
when the distance between an oxygen or nitrogen atom and
an acidic hydrogen (O/N‚‚‚HN, HO, HS) was equal to or less
than 2.5 Å. Some properties of the inhibitors as estimated by
the QikProp program47 were also considered as possible
descriptors, in particular, the octanol/water partition coef-
ficient (QPlogPo/w) and the number of rotatable bonds
(#RB).

Table 8. p38 Activities of Core 8 Derivatives

no. R1 R2 Kd
a (nM) ∆Gexpt

b

M23 H phenyl >7000 >-7.02
M24 cyclohexyl phenyl 130 -9.38
M25 2-pyridinyl phenyl 400 -8.72
M26 3-pyridinyl phenyl 420 -8.69
M27 4-pyridinyl phenyl 1200 -8.07
M28 3-aminophenyl phenyl 100 -9.54
M29 4-aminophenyl phenyl 318 -8.85
M30 2,3-dimethylphenyl phenyl 3 -11.61
M31 CH2-phenyl phenyl 47 -9.98
M32 CH2CH2-phenyl phenyl 260 -8.97
M33 1-naphthyl phenyl 5 -11.3
M34 2-indanyl phenyl 14 -10.70
M35 2-fluorophenyl 4-methylphenyl 14 -10.70
M36 1-naphthyl 4-methylphenyl 1 -12.26

a Reference 31. b Experimental free energies from ∆Gexpt ) RT
ln(Kd) in kcal/mol.

Table 9. Lck Activities of Core 9 Derivatives

no. R IC50
a (nM) ∆Gexpt

b

L1 cyclohexyl 3170 -7.49
L2 cyclopropyl 3170 -7.49
L3 n-propyl 2680 -7.59
L4 3-pyridinyl 820 -8.29

a Reference 32. b Experimental free energies from ∆Gexpt ≈ RT
ln(IC50) in kcal/mol.

Table 10. Lck Activities of Core 10 Derivatives

no. R1 R2 R3 R4

IC50
a

(nM) ∆Gexpt
b

L5 H H H H 890 -8.24
L6 2-F H H H 390 -8.73
L7 3-F H H H 1330 -8.00
L8 2-Cl H H H 60 -9.84
L9 2-Br H H H 170 -9.22
L10 2-OMe H H H 5520 -7.16
L11 2-Cl,4-Me H H H 240 -9.02
L12 2-Cl,4,6-di-Me H H H 30 -10.25
L13 2,4,6-tri-Me H H H 40 -10.08
L14 2,6-di-Me H H H 16 -10.62
L15 2,6-di-Br H H H 50 -9.95
L16 2,6-di-Cl H H H 9 -10.96
L17 2,6-di-F H H H 360 -8.78
L18 2-Cl,6-Me H H H 9 -10.96
L19 2,6-di-Et H H H 1690 -7.86
L20 2-Cl H H Me 30 -10.25
L21 2-Br H Me H 180 -9.19
L22 2-Cl,6-Me 7,8-di-MeO CH2OH H 6.2 -11.18
L23 2-Cl,6-Me 7,8-di-MeO CHO H 10 -10.90
L24 2,6-di-Me 7,8-di-MeO H H 2.4 -11.74
L25 2-Cl,6-Me 7,8-di-MeO H H 2 -11.85
L26 2-Cl,6-Me 6,7-di-MeO H H 2 -11.85
L27 2,6-di-Me 6,7-di-MeO H H 2.4 -11.74
L28 2-Cl,6-Me 6,7-di-OH H H 4 -11.44
L29 2-Cl,6-Me 6-MeO H H 3 -11.61
L30 2-Cl,6-Me 7-MeO H H 8.7 -10.98
L31 2-Cl,6-Me 8-MeO H H 280 -8.93
L32 2-Cl,6-Me 5-MeO H H 9.4 -10.94
L33 2,6-di-Me 5-NO2 H H 100 -9.54
L34 2,6-di-Me 5-NH2 H H 70 -9.75
L35 2-Cl,6-Me 6-F H H 26 -10.33
L36 2-Cl,6-Me 6-Br H H 15 -10.66
L37 2-Cl,6-Me 6-COOMe H H 26 -10.33
L38 2,6-di-Cl 6-NO2 H H 24 -10.38
L39 2-Cl,6-Me 6-CN H H 100 -9.54
L40 2-Cl,6-Me 6-NH2 H H 7 -11.11
L41 2-Cl,6-Me 6-NHAc H H 3 -11.61
L42 2-Cl,6-Me 7-Br H H 14 -10.70
L43 2-Cl,6-Me 7-NH2 H H 21 -10.46
L44 2-Cl,6-Me 7-NHAc H H 11 -10.84
L45 2-Cl,6-Me 7-CONH2 H H 30 -10.25
L46 2-Cl,6-Me 6-NMe2 H H 5 -11.31
L47 2-Cl,6-Me 6-NEt2 H H 2 -11.85
L48 2-Cl,6-Me 6-NHEt H H 10 -10.90
L49 2-Cl,6-Me 6-morpholinyl H H 4 -11.44
L50 2-Cl,6-Me 7-NEt2 H H 9 -10.96
L51 2-Cl,6-Me 7-morpholinyl H H 6 -11.20

a Refs 32 and 33. b Experimental free energies from ∆Gexpt ≈
RT ln(IC50) in kcal/mol.
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Statistical Analysis. Multiple linear regression analysis
was performed using the statistical software package JMP.48

Descriptor sets were chosen so that the number of descriptors
was minimized and the correlation coefficient, r2, was maxi-
mized. The statistical significance of the descriptors was
confirmed from the variance analysis using the F ratios
(regression model mean square/error mean square), requiring
that the probability of a greater F value occurring by chance
(Prob > F) is less than 0.05. A cross-validated r2 value, q2,
was obtained by the leave-one-out procedure.

Results
Binding Modes. MC simulations of 148 protein-

ligand complexes and corresponding free ligands in
TIP4P water were performed with MCPRO. Structures
of the cores for Tables 1 and 10, and M1, and nearby
binding-site residues in CDK2, Lck, and p38 are shown
in Figures 3-5, respectively. Multiple images from the
MC simulations are overlaid, and the structures are
aligned in a consistent manner. It is recalled that the
CDK2 and Lck inhibitors in this study bind in the ATP-
binding site, while the p38 inhibitors bind to an allo-
steric site that is adjacent to the ATP site. Thus, the
p38 inhibitor is shifted to the right in Figure 5. As
illustrated, four, two, and three protein-ligand hydro-
gen bonds are present in the CDK2, Lck, and p38
systems. In addition to these normal hydrogen bonds,
CH‚‚‚O and OH‚‚‚π interactions were observed in the
Lck system (Figure 6). A substantial conformational
change is observed in the X-ray structures for the
conserved Asp-Phe-Gly segment (shown in cyan in
Figures 3-5) for p38 compared to the other two struc-
tures.

Individual ELR Models. ELR analysis was carried
out for the three individual kinase systems, and the
following linear regression equations were obtained as
optimal using three descriptors. Inclusion of additional
descriptors was not significantly beneficial.

CDK2:

Lck:

p38:

EXX-C, EXX-LJ, and EXX are the ligand-protein
Coulomb and Lennard-Jones interaction energies and
their sum, respectively. ∆HBtotal represents the change
in the total number of hydrogen bonds for the inhibitor
upon binding (i.e., bound - unbound); it is normally a
negative number or zero. ∆FOSA is the change in
hydrophobic component of the solvent accessible surface
area for the inhibitor upon binding. Using the three
descriptors with the full datasets of 61, 51, and 36
compounds, the correlation coefficients, r2, are 0.759,
0.734, and 0.678; the rms errors are 0.729, 0.676, and
0.767 kcal/mol; the mean unsigned errors are 0.602,
0.540 and 0.637 kcal/mol; and the predictive correlation
coefficients from the leave-one-out procedure, q2, are
0.722, 0.683, and 0.603, respectively. The maximum
probability > F ratios for any descriptor in eqs 5, 6, and
7 is 0.0069, 0.0093, and 0.0122. Many of the ELR
correlations in this paper have r2 values near 0.7, so
only a few typical plots of experimental vs calculated
∆G values are presented, e.g., Figure 7 illustrates the
results from eq 5 for the CDK2 dataset.

The descriptors and the signs of their coefficients in
eqs 5-7 make physical sense. All signs for EXX-C, EXX-
LJ, and EXX in eqs 5-7 are positive, which reflects that
good electrostatic and steric complementarities between
the ligand and protein are essential for high activity
(low IC50, low ∆G). The coefficient of ∆HBtotal represents
the dehydration penalty and amounts to 0.216 and 0.320
kcal/mol for each hydrogen bond lost in the CDK2 and
Lck systems. This coefficient has ranged from 0.22 to
1.65 in previous ELR models;11-13 the present, relatively
small values likely reflect that the loss of hydrogen
bonds is also represented in the EXX-C terms here (vide
infra). The second and third terms in eq 7 make the
reasonable statement that removal of hydrophobic
surface area upon binding and increased hydrophobicity
for the inhibitor are also favorable. EXX-LJ and log Po/w
are often well correlated until a ligand becomes too big
to fit into a binding site.

If EXX-LJ and EXX-C in eqs 5 and 6 are combined
into EXX and the data are refit, eqs 8 and 9 are
obtained.

Using only two descriptors with the 61 and 51 com-
pounds, the correlation coefficients, r2, become 0.758 and
0.651; the rms error are 0.731 and 0.774 kcal/mol; the
mean unsigned errors are 0.605 and 0.608 kcal/mol; and
the leave-one-out q2 values are 0.727 and 0.607, respec-
tively. The maximum probability > F ratios for the
descriptors in eqs 8 and 9 are 0.0074 and 0.0209. As
the coefficients of EXX-LJ and EXX-C in eq 5 are
similar, eq 8 shows negligible degradation in the fit,
while there is modest degradation for eq 9 vs eq 6.

Table 11. Principal Descriptors Considered in the ELR
Analysisa

symbol description

EXX-LJ ligand-protein Lennard-Jones interaction energy
EXX-C ligand-protein Coulombic interaction energy
ESX-LJ ligand-water Lennard-Jones interaction energy
ESX-C ligand-water Coulombic interaction energy
∆ELJ EXX-LJ + ESX-LJ(bound) - ESX-LJ(unbound)
∆EC EXX-C + ESX-C(bound) - ESX-C(unbound)
∆Eint change in internal energy for the ligand
∆FOSA change in hydrophobic surface area
∆FISA change in hydrophilic (N, O, HN, HO, HS) surface area
∆ARSA change in aromatic hydrocarbon surface area
∆WPSA change in weakly polar (P, S, halogens) surface area
∆SASA total change in SASA for the ligand
∆HBtotal change in number of hydrogen bonds for the ligand
#RB the number of rotatable bonds for the ligand
QPlogPo/w octanol/water log P estimated by QikProp

a Changes ∆ refer to the difference in the quantity for the ligand
bound to the protein versus unbound in water.

∆Gcalcd ) 0.0644〈EXX〉 + 0.00619〈∆FOSA〉 -
0.760(QPlogPo/w) - 0.636 (7)

CDK2: ∆Gcalcd ) 0.0996〈EXX〉 -
0.209〈∆HBtotal〉 - 1.78 (8)

Lck: ∆Gcalcd ) 0.195〈EXX〉 - 0.319〈∆HBtotal〉 - 0.677
(9)

∆Gcalcd ) 0.100〈EXX-C〉 + 0.110〈EXX-LJ〉 -
0.216〈∆HBtotal〉 - 1.350 (5)

∆Gcalcd ) 0.0989〈EXX-C〉 + 0.257〈EXX-LJ〉 -
0.320〈∆HBtotal〉 + 0.623 (6)
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EXX or the combination of EXX-C and EXX-LJ is
significant for all three systems, ∆HBtotal is also im-
portant for both CDK2 and Lck, and ∆FOSA and
QPlogPo/w are relevant for p38. Notably, the same

descriptors are used for both CDK2 and Lck, where the
target is the ATP binding site, though structurally
different series of inhibitors were employed in the
analyses. The hydrophobicity of the inhibitors appears
to be a more distinct consideration for the p38 inhibitors,
which bind to the less polar allosteric site.

Figure 3. Representative MC configurations of the complex between CDK2 and the core from Table 1. Hydrogen bonds between
the inhibitor and CDK2 are shown as black lines.

Figure 4. Representative MC configurations of the complex between Lck and the core from Table 10. Hydrogen bonds between
the inhibitor and Lck are shown as black lines.

Figure 5. Representative MC configurations of the M1-p38
complex. Hydrogen bonds between M1 and p38 are shown as
black lines.

Figure 6. Representative MC configurations for the complex
of Lck and the core from Table 10. CH‚‚‚O and OH‚‚‚π
interactions between the inhibitor and Lck are shown as black
lines.
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Using the ELR model of one system, the activities for
the other two systems were then predicted. When the
CDK2 model (eq 5) is applied to the Lck and p38
systems, the correlation coefficients, q2, between the
predicted and experimental ∆Gs are 0.666 and 0.333.
When the Lck model (eq 6) is applied to the CDK2 and
p38 systems, the q2 values are 0.538 and 0.356. When
the p38 model (eq 7) is applied to the CDK2 and Lck
systems, the q2 values are 0.214 and 0.504. Thus, not
surprisingly, the CDK2 and Lck models do reasonably
well for either protein, but they do poorly for the p38
inhibitors. The p38 model does poorly in predictions for
the CDK2 dataset, but performs better for Lck. The
latter result may be fortuitous or it may reflect greater
geometrical overlap of the p38 and Lck inhibitors in the
binding sites (Figures 3-5).

Combination of Two Datasets To Predict the
Third. The next step was to ascertain the quality of
predictions that could be made for a new kinase target
using models obtained from combination of the results
for two other systems. Thus, each of the three kinases
was treated in turn as the new target. Since the CDK2
(eqs 5 and 8) and Lck (eqs 6 and 9) models used the
same descriptors, their datasets were combined and the
resultant regression equation kept the original descrip-
tors. As the remaining two combinations, p38 (eq 7) and
CDK2 (eq 8), and p38 and Lck (eq 9), had EXX in
common, EXX was retained in the combined models.
During the fitting process for the CDK2-p38 and Lck-
p38 combinations, p38 inhibitors M6 and M7 consist-
ently appeared as outliers. The experimental data do
not appear to be anomalous for them, so it possible that
the initial structures that were generated in these two
cases are not optimal and were not relaxed adequately
during the simulations. We have chosen to enforce a
standard computational protocol and to not process
them in any special manner. After removing them as
outliers, the following optimal regression equations were
obtained for the three pairs of combined datasets.

CDK2 and Lck:

CDK2 and p38:

p38 and Lck:

Lcorr is an indicator variable with value 1 for an Lck
inhibitor, and otherwise 0. It is presumably making a
systematic adjustment for differences in the assay
conditions or nature of the measurements, IC50 or Kd.
An indicator variable may have also been needed for
eq 11, but was not significant. ∆SASA is the change in
total solvent accessible surface area of the inhibitor upon
binding. Using four, three, and four descriptors with
112, 95, and 85 compounds, the correlation coefficients,
r2, are 0.737, 0.692, and 0.649; the rms errors are 0.722,
0.795, and 0.784 kcal/mol; the mean unsigned errors are
0.598, 0.676, and 0.654 kcal/mol; and the leave-one-out
q2 values are 0.712, 0.661, and 0.602, respectively. The
maximum probability > F ratios for the descriptors in
eqs 10, 11, and 12 are 0.0001, 0.0001, and 0.0026,
respectively. The combined results for the CDK2 and
Lck systems from eq 10 are illustrated in Figure 8.

All three ELR models share the same descriptors,
EXX, ∆HBtotal, ∆SASA, but there is some variation in
the coefficients. The descriptors and signs of the coef-
ficients are physically reasonable. Good electrostatic and
steric complementarities between the inhibitor and
protein are important for activity, as usual, and the
penalty for the loss of each hydrogen bond is consistently
near 0.3 kcal/mol. Increased burial of ligand surface

Figure 7. Plot of computed ∆Gcalcd from eq 5 vs experimental
activity data, ∆Gexpt, for CDK2.

Figure 8. Plot of computed ∆Gcalcd from eq 10 vs experimental
activity data, ∆Gexpt, for the combined CDK2 and Lck systems.

∆Gcalcd ) 0.0995〈EXX〉 - 0.269〈∆HBtotal〉 +
0.0103〈∆SASA〉 - 3.75 (Lcorr) + 3.45 (10)

∆Gcalcd ) 0.0814〈EXX〉 - 0.289〈∆HBtotal〉 +
0.0110〈∆SASA〉 + 2.06 (11)

∆Gcalcd ) 0.0723〈EXX〉 - 0.312〈∆HBtotal〉 +
0.0147〈∆SASA〉 - 3.03 (Lcorr) + 3.55 (12)
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area upon binding also enhances activity. Though the
contribution of the ∆SASA term is often nearly constant
for a small dataset,9 its range and significance may
increase as the size and diversity of the dataset increase.

Using the combined ELR models, the activities for the
remaining system were predicted. When eqs 10, 11, and
12 are applied to the p38, Lck, and CDK2 systems, the
correlation coefficient, q2, between predicted and ex-
perimental ∆Gs is 0.538, 0.704 and 0.706, respectively.
The predictability of the combined ELR models im-
proved nicely from that of the individual ELR models,
which yielded an average q2 of 0.435. Figure 9 illustrates
the results and typical patterns that may be expected
if the combined models are applied to predict activities
of a set of proposed inhibitors for a new kinase target.
All combined models predict well the activity trends for
the remaining system. The predictions for the p38
inhibitors are the least good since they are based on the
datasets for the two systems which feature ATP-site
inhibitors. However, inclusion of the p38 dataset with
either the CDK2 or Lck data still allows good prediction
for the other ATP-site case. The best predictive model
is expected to arise from combination of all three
datasets.

Final ELR Model Using All Three Datasets. As
the three combined models used the same descriptors,
a final regression equation was sought using these
descriptors and all three datasets. The regression
analysis was carried out for all 148 compounds, and
again the two outliers from the p38 system were
detected (M6 and M7). With their exclusion, eq 13 was
obtained.

Using four descriptors and 146 compounds, the correla-
tion coefficient, r2, is 0.691, the rms error is 0.775 kcal/
mol, the mean unsigned error is 0.647 kcal/mol, and the
leave-one-out q2 is 0.666 (Figure 10). The probability >
F ratio of each descriptor is <0.0001. When EXX is
separated into EXX-C and EXX-LJ, eq 14 is obtained;
however, there is no change in the statistics.

The free energies associated with EXX-C, EXX-LJ,
∆HBtotal, ∆SASA, and Lcorr cover ranges of 6.95, 2.34,
2.32, 4.13, and 3.11 kcal/mol, respectively, so each term
makes a significant contribution to the activity predic-
tions. To evaluate the relative contribution of each
descriptor more clearly, all descriptors and activities
were mean centered and scaled by their standard
deviation. The scaled data were then refit and yielded
eq 15

where the underlining means the descriptors are scaled.
Thus, the significance of the contributions to ∆Gcalcd
decrease in the following order: EXX-C, Lcorr, ∆SASA,
∆HBtotal, and EXX-LJ.

Model Validation Using a Genetic Algorithm.
The ELR model, eq 13, was developed via a build-up
approach in which the dataset was gradually expanded
and the fitting process was repeated. This approach may
not lead to the globally optimal model. The best method
to find the optimal model is an exhaustive one where

Figure 9. Data for two kinases provides a model to predict activities for the third kinase. Plots of computed ∆Gcalcd from eqs
10-12 vs experimental activity data, ∆Gexpt, for p38 (left), Lck (center), and CDK2 (right).

∆Gcalcd ) 0.0848〈EXX〉 - 0.293〈∆HBtotal〉 +
0.0123〈∆SASA〉 - 3.11(Lcorr) + 3.08 (13)

∆Gcalcd ) 0.0845〈EXX-C〉 + 0.0771〈EXX-LJ〉 -
0.294〈∆HBtotal〉 + 0.0129〈∆SASA〉 -

3.11(Lcorr) + 3.08 (14)

Figure 10. Plot of computed ∆Gcalcd from eq 13 vs experi-
mental activity data, ∆Gexpt, for all three kinases.

∆Gcalcd ) 1.30〈EXX-C〉 + 0.323〈EXX-LJ〉 -
0.378〈∆HBtotal〉 + 0.508〈∆SASA〉 - 1.06(Lcorr) (15)
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all possible combinations of descriptors and outliers are
considered in the fitting process. This tactic, however,
is generally impractical, so we applied a genetic al-
goritm49,50 (GA) to test the selection of variables and
outliers and to ascertain if the final ELR model was near
the global optimum. In this approach, the maximum
numbers of descriptors and outliers are entered, and the
best partial least-squares regression51,52 (PLS) model is
determined by optimization with the GA. The present
148 inhibitors, the independent descriptors from Table
11, and Lcorr were considered. One thousand random
combinations of variables (descriptors) and outliers were
selected. Using the selected variables and eliminated
outliers, PLS analysis was performed and q2 values were
evaluated. The 50 combinations of variables and outliers
with the highest q2 values were then selected as the
initial population. One pair of combinations of variables
and outliers was randomly selected from the initial
population as parents. The parents were subjected to
crossover, and each offspring was subjected to random
single-point mutation. When the numbers of selected
descriptors and outliers of the offspring were less than
or equal to the maximum number entered initially, PLS
analysis was performed and q2 values were evaluated.

When the highest q2 value of an offspring was superior
to the lowest q2 value of the initial population, the
offspring was replaced with the parent and the initial
population was explored. The selection, crossover, mu-
tation, evaluation, and exploration processes were then
repeated 5000 times.

The results are summarized in Table 12. As the
number of descriptors increases from two to four, q2

improves significantly and reaches a plateau around
0.69. When the number of descriptors is four, the
descriptors used in eq 13 are also found in the best PLS
models. When the number of outliers is allowed to be
two or more, M6 and M7, which were eliminated in the
build-up approach, are always selected regardless of the
number of descriptors. The descriptors and outliers used
in eq 13 are also found in the best PLS model, when
the maximum numbers of descriptors and outliers are
set to four and two. Negligible improvement is obtained
by increasing the number of descriptors or outliers.
Thus, eq 13 with a q2 of 0.666 is effectively optimal. The
ratio of data points to descriptors (146/4) and the small
number of outliers (2/148) are notable. The MC simula-
tions were only carried out for these 148 inhibitors; the
148 were chosen primarily as all of the inhibitors in the

Table 12. Results of Model Optimizations Using a Genetic Algorithm

number of variablesnumber of
outliers 2 3 4 5

0 q2 0.347 0.566 0.627 0.637
descriptors EXX, Lcorr EXX, ∆SASA, Lcorr EXX, ∆SASA, ∆HBtotal, Lcorr EXX, ∆SASA, ∆HBtotal, ∆ARSA, Lcorr

outliers - - - -
1 q2 0.368 0.590 0.649 0.652

descriptors EXX, Lcorr EXX, ∆SASA, Lcorr EXX, ∆SASA, ∆HBtotal, Lcorr EXX, ∆SASA, ∆HBtotal, ∆Eint, Lcorr

outliers M6 M6 M6 M7
2 q2 0.387 0.607 0.666 0.675

descriptors EXX, Lcorr EXX, ∆SASA, Lcorr EXX, ∆SASA, ∆HBtotal, Lcorr EXX, ∆SASA, ∆HBtotal, ∆Eint, Lcorr

outliers M6, M7 M6, M7 M6, M7 M6, M7
3 q2 0.404 0.590 0.674 0.683

descriptors EXX, Lcorr EXX-C, ∆SASA, Lcorr EXX, ∆SASA, ∆HBtotal, Lcorr EXX, ∆SASA, ∆HBtotal, ∆Eint, Lcorr

outliers M6, M7, M8 M6, M7, L19 M6, M7, M35 M6, M7, M35
4 q2 0.422 0.630 0.681 0.690

descriptors EXX, Lcorr EXX, ∆SASA, Lcorr EXX, ∆SASA, ∆HBtotal, Lcorr EXX, ∆SASA, ∆HBtotal, ∆Eint, Lcorr

outliers M6, M7, M8, M36 M6, M7, M35, L19 M6, M7, M35, L28 M6, M7, M32, M35
5 q2 0.438 0.640 0.686 0.695

descriptors EXX, Lcorr EXX, ∆SASA, Lcorr EXX, ∆SASA, ∆HBtotal, Lcorr EXX, ∆SASA, ∆HBtotal, ∆ARSA, Lcorr

outliers M6, M7, M8, M35, M36 M6, M7,M30,M32, M35 M6, M7, M10, M32, M35 M6, M7, M10, M13, L20

number of variablesnumber of
outliers 6 7 8

0 q2 0.637 0.637 0.637
descriptors EXX, ∆SASA, ∆HBtotal, ∆ARSA, Lcorr EXX, ∆SASA, ∆HBtotal, ∆ARSA, Lcorr EXX, ∆SASA, ∆HBtotal, ∆ARSA, Lcorr

outliers - - -
1 q2 0.665 0.665 0.665

descriptors EXX, ∆SASA, ∆HBtotal, ∆ARSA, ∆Eint,
Lcorr

EXX, ∆SASA, ∆HBtotal, ∆ARSA, ∆Eint,
Lcorr

EXX, ∆SASA, ∆HBtotal, ∆ARSA, ∆Eint,
Lcorr

outliers M6 M6 M6
2 q2 0.682 0.682 0.682

descriptors EXX, ∆SASA, ∆HBtotal, ∆ARSA, ∆Eint,
Lcorr

EXX, ∆SASA, ∆HBtotal, ∆ARSA, ∆Eint,
Lcorr

EXX, ∆SASA, ∆HBtotal, ∆ARSA, ∆Eint,
Lcorr

outliers M6, M7 M6, M7 M6, M7
3 q2 0.690 0.690 0.690

descriptors EXX, ∆SASA, ∆HBtotal, ∆ARSA, ∆Eint,
Lcorr

EXX, ∆SASA, ∆HBtotal, ∆ARSA, ∆Eint,
Lcorr

EXX, ∆SASA, ∆HBtotal, ∆ARSA, ∆Eint,
Lcorr

outliers M6, M7, L20 M6, M7, L20 M6, M7, L20
4 q2 0.698 0.698 0.697

descriptors EXX, ∆SASA, ∆HBtotal, ∆ARSA, ∆Eint,
Lcorr

EXX, ∆SASA, ∆HBtotal, ∆ARSA, ∆Eint,
Lcorr

EXX, ∆SASA, ∆HBtotal, ∆ARSA, ∆Eint,
Lcorr

outliers M6, M7, M13, L28 M6, M7, L20, L28 M6, M7, M32, L20
5 q2 0.699 0.699 0.698

descriptors EXX, ∆SASA, ∆HBtotal, ∆ARSA, Lcorr EXX, ∆SASA, ∆HBtotal, ∆ARSA, ∆Eint,
Lcorr

EXX, ∆ELJ, ∆SASA, ∆HBtotal, ∆ARSA,
∆Eint, Lcorr

outliers M6, M7, M10, M13, L20 M6, M7, M13, L28, C12 M1, M6, M7, L18, L47
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experimental studies that could readily be built by
BOMB, i.e., without adding additional substituents to
its database.

Lcorr Indicator Variable. Lcorr was initially justified
as an offset for variation in the biological assay condi-
tions. However, the coefficient in eq 13 for Lcorr, -3.11,
seems somewhat large. An additional possibility is that
it is reflecting other constant factors which contribute
to improved activity and protein-ligand binding for the
present Lck inhibitors. Thus, a more thorough struc-
tural analysis was carried out on configurations from
the MC simulations focusing on the imidazoquinoxaline
core, which the Lck inhibitors have in common (Tables
9 and 10).

As mentioned above, the imidazoquinoxaline core
forms NH‚‚‚N and CH‚‚‚O hydrogen bonds with the
backbone of Met 319 and Glu 317 (Figure 6). Such
CH‚‚‚O contacts are observed in many protein-kinase
systems, especially in the ATP binding site.53-55 Ac-
cording to ab initio HF/6-31G** calculations on model
systems, the interaction energy of the CH‚‚‚O hydrogen
bond between the C4 proton of imidazole and oxygen of
water is -2.16 kcal/mol, and the C4-O distance is 3.66
Å.56 For comparison, at the same computational level,
the OH‚‚‚O interaction energy for the water dimer is
-5.51 kcal/mol and the O-O separation is 2.99 Å. The

average C-O and N-N distances for the CH‚‚‚O and
NH‚‚‚N hydrogen bonds in the 10 representative snap-
shots shown in Figure 6 are 3.49 and 3.02 Å, respec-
tively. As CH‚‚‚O interactions were not included in the
hydrogen bond counts in this study, ∆HBtotal may be too
negative for the Lck system; however, based on the
coefficient in eq 13, this would only amount to a
correction of -0.293 kcal/mol. Another notable feature
for the imidazoquinoxaline core is that it participates
in one or two hydrogen bonds with water molecules that
bridge to the side chain of Asp382. The direct interac-
tions of the protein and inhibitor are represented in eq
13 along with a penalty for desolvation of the inhibitor.
However, desolvation of the protein and related effects
of water mediated protein-inhibitor hydrogen bonding
are not explicitly considered. They may be relatively
favorable for the present Lck inhibitors and contribute
to the coefficient for Lcorr.

Specificity for the ATP-Binding Site. Most kinase
inhibitors bind to the ATP site. Successful drug candi-
dates need to do this in a highly selective manner in
order to avoid interference with kinases other than the
target kinase. To gain insights into the binding-site
residues that can contribute to selectivity for the present
kinases, the protein-inhibitor interaction energies,

Figure 11. Residue-based EXX-LJ for CDK2, Lck, and p38.
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EXX-LJ and EXX-C, were broken down into their
contributions from individual residues.

The sequences of the ATP-binding domains for the
three kinases were aligned with ClustalX.57 The average
residue-based interaction energies, EXX-LJ and EXX-
C, for the three proteins are illustrated in Figures 11
and 12, respectively. These results have been averaged
over all of the inhibitors and during the entire averaging
segments of the MC simulations for the complexes. The
patterns for the energy components for p38 are clearly
different from those for CDK2 and Lck owing to the
difference in binding sites. The present analysis then
focuses on the differences for the CDK2 and Lck
inhibitors as competitors for ATP-binding sites. For
CDK2, residues Ile10, Val18, Ala31, Lys33, Val 64,
Phe80, Phe82, Leu83, Gln85, Leu134, Ala144, and
Asp145 have notable favorable Lennard-Jones (van der
Waals) interactions with the inhibitor as do the corre-
sponding residues of Lck, Leu251, Val259, Ala271,
Lys273, Val301, Thr316, Tyr318, Met319, Gly322,
Leu371, Ala381, and Asp382. Residues with highly
favorable Lennard-Jones interactions with the ligand
in only one system are Lys89 in CDK2, and Glu288,
Met292, and Ile314 in Lck. These specific residues with
the cores from Tables 1 and 10 are overlaid in Figure

13. For CDK2, the side chain of Phe80 blocks the right
side of the ATP-binding site and the CDK2 ligands
cannot contact the residues corresponding to Glu288,
Met292, and Ile314 in Lck. Thus, inhibitor designs that
feature interactions with Glu288, Met292, and Ile314
can improve specificity for Lck.

For the Coulombic interactions, residues Glu51, Leu83,
and Lys89 of CDK2 and their Lck analogues, Glu288,
Met319, and Asp326, show particularly favorable in-
teractions with the inhibitors. Asp145 of CDK2 also has
notably attractive electrostatic interactions, but the
corresponding Asp382 of Lck has a net repulsive elec-
trostatic interaction with the inhibitor. As mentioned
above, the imidazoquinoxaline core of the Lck inhibitors
forms water-mediated hydrogen bonds with Asp382, and
this may compensate for the unfavorable interaction.
The residues with favorable electrostatic interactions
for just one kinase are Glu81 and Asp86 in CDK2 and
Thr316 in Lck. These common and unique residues are
overlaid with the example inhibitors in Figure 14. The
Coulombic interaction between Asp86 in CDK2 and the
sulfonamide group of the inhibitor is particularly favor-
able and it is reinforced by the interaction with Lys89.
Removal of the sulfonamide eliminates CDK2 inhibition
(Table 2). Thus, maximizing favorable interactions on

Figure 12. Residue-based EXX-C for CDK2, Lck, and p38.
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this West end of the ATP-binding for CDK2 inhibitors
and maximizing them on the East end for Lck inhibitors
(Figure 13) should lead to high selectivity between this
kinase pair.

Discussion

As noted above, in our previous ELR studies,11-14 the
descriptors that emerged most often as significant are
EXX-LJ, ∆HBtotal, ∆FOSA, ∆Eint, and #RB. ∆HBtotal and
EXX-LJ are also applicable to the kinase systems. In
addition, ∆SASA and EXX-C arose as significant in this
study. Though the descriptors are all reasonable and
the number in each ELR model is small, the selected
set and their coefficients are variable. Therefore, a
universal ELR equation has not been obtained. In
particular, the constant terms have ranged widely: 0.3
for factor Xa,14 -1.3 for HIV-1 RT,11 3.1 for kinases (eq
13), -7.9 for COX-2,13 and -13.3 kcal/mol for throm-

bin.12 Though some of the variation may reflect differ-
ences in assay conditions, it is most likely that the
constants are absorbing some contributions from de-
scriptors that are relatively invariant for a specific
protein or set of inhibitors.

The lack of EXX-C in the prior ELR models is
particularly striking, though it has some overlap with
∆HBtotal. Notably, the thrombin inhibitors12 all have a
+1 charge and feature strong electrostatic interactions
with the protein including the hallmark salt bridge
between an amidinium group and the side chain of
Asp189. Only 20 inhibitors were covered in the thrombin
study; it is expected that the strong protein-ligand
electrostatic attraction is relatively constant for them
and it is embedded in the large constant term, -13.3
kcal/mol. Given the much greater size and diversity of
the dataset for the present study of kinase inhibition
and the polarity of the ATP binding site, it is reasonable

Figure 13. Key residues showing specificity for CDK2 and Lck based on Lennard-Jones interactions.

Figure 14. Key residues showing specificity for CDK2 and Lck based on Coulombic interactions.
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and reassuring that EXX-C has now emerged as sig-
nificant. Nevertheless, there is still a substantial con-
stant in eq 13, which along with the ∆SASA term may
be masking other relatively invariant contributors that
might be revealed by analysis of still larger datasets.

Another striking point is that ∆HBtotal appears in the
regression equations for the kinases, HIV-1 RT, throm-
bin, and COX-2, and the term was largely invariant for
factor Xa. It is derived from eq 16,

where HBtotal
P-L is the total number of hydrogen bonds

between protein and ligand, and HBtotal
L-S(complex) and

HBtotal
L-S(free) are the total number of hydrogen bonds

between ligand and water in the protein-ligand com-
plex and unbound state. The sign of its coefficient is
always negative, but the magnitude has varied from
0.22 to 1.65. The magnitude here, 0.3, is consistent with
the contribution of typical hydrogen bonds to the EXX-C
term in eq 13. For example, as mentioned above, the
cores from Tables 1 and 10 form hydrogen bonds with
Leu83 in CDK2 and Met319 in Lck. EXX-C was broken
down into its contributions from the individual residues.
The Coulombic interaction energy between core 1 and
Leu83 is -3.43 kcal/mol and it is -3.49 kcal/mol
between core 10 and Met319. The contributions of these
Coulombic interactions to ∆Gcalcd are then both -0.3
kcal/mol using eq 14. This value is the same as the
coefficient of ∆HBtotal. In the present model then, if the
ligand forms a hydrogen bond with the protein, there
is a net favorable contribution of ca. 0.3 kcal/mol to
∆Gcalcd from the EXX-C term because ∆HB is zero. If
the ligand forms a hydrogen bond to water in both the
unbound and bound state, there is no net contribution
to ∆Gcalcd because ∆HB is again zero. No explicit term
for desolvation of the protein is evident in eq 13, though
such effects are reflected in EXX. If the protein and
ligand have a good hydrogen-bonding match, EXX will
be more favorable.

Conclusions
Individual ELR models were obtained to reproduce

inhibitory activities for CDK2, Lck, and p38 with r2

values of 0.759, 0.734, and 0.678, respectively. Although
structurally different series of inhibitors were employed
in the analyses, all descriptors, EXX-C, EXX-LJ, and
∆HBtotal, are the same for the CDK2 and Lck models.
As the inhibitors for p38 bind to a different, allosteric
binding site, alternative descriptors, EXX, ∆FOSA, and
QlogPo/w, became significant. All three models shared
EXX or its components, EXX-C and EXX-LJ, in common.

The datasets for two of the three kinases were then
combined in turn for training. The combined ELR
models yielded q2 values of 0.649 to 0.737 for predictions
on the remaining kinase dataset using one indicator
variable, Lcorr, and three common descriptors.

Finally, the complete dataset covering 146 inhibitors
for the three kinases was used to yield one ELR model,
which reproduces the experimental activities well (r2 )
0.691) and shows good predictive ability (q2 ) 0.666).
The selected descriptors, EXX, ∆HBtotal, and ∆SASA,
provide insight on the factors that control kinase

inhibition. Specifically, good steric and electrostatic
matches between inhibitor and protein are favorable,
loss of hydrogen bonds for the inhibitor upon binding is
unfavorable, and burial of surface area of the inhibitor
is favorable. The choice of descriptors and quality of the
model were confirmed with an optimization procedure
that featured a genetic algorithm.

In prior work, the ability of the ELR approach to
reproduce observed activities for inhibitors of a single
protein using a small number of descriptors has been
clearly demonstrated. Though a few consensus descrip-
tors have emerged, the optimal models for different
proteins are sufficiently varied that discovery of a
universally applicable ELR equation has been elusive.
Progress on this issue has been made in the present
study of the inhibition of three protein kinases. It has
been demonstrated that the ELR approach can not only
reproduce well experimental activities for kinase inhibi-
tors, but that there is also good transferability of the
ELR models to yield useful predictions for new kinase
targets and a potentially valuable tool for inhibitor
design.
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